A note on subnormal defect in finite soluble groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

a note on finite c-tidy groups

let $g$ be a group and $x in g$‎. ‎the cyclicizer of $x$ is defined to be the subset $cyc(x)=lbrace y in g mid langle x‎, ‎yrangle ; {rm is ; cyclic} rbrace$‎. ‎$g$ is said to be a tidy group if $cyc(x)$ is a subgroup for all $x in g$‎. ‎we call $g$ to be a c-tidy group if $cyc(x)$ is a cyclic subgroup for all $x in g setminus k(g)$‎, ‎where $k(g)$ is the intersection of all the cyclicizers in ...

متن کامل

Finite Groups Whose «-maximal Subgroups Are Subnormal

Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...

متن کامل

Finite subnormal coverings of certain solvable groups

A group is said to have a finite covering by subgroups if it is the set theoretic union of finitely many subgroups. A theorem of B. H. Neumann [11] characterizes groups with finite coverings by proper subgroups as precisely those groups with finite non-cyclic homomorphic images. R. Baer (see [13, Theorem 4.16]) proved that a group has a finite covering by abelian subgroups if and only if it is ...

متن کامل

on soluble groups whose subnormal subgroups are inert

a subgroup h of a group g is called inert if‎, ‎for each $gin g$‎, ‎the index of $hcap h^g$ in $h$ is finite‎. ‎we give a classification ‎of soluble-by-finite groups $g$ in which subnormal subgroups are inert in the cases where $g$ has no nontrivial torsion normal subgroups or $g$‎ ‎is finitely generated‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1989

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700002732